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Direct numerical simulations of bubbly flows
Part 2. Moderate Reynolds number arrays
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Direct numerical simulations of the motion of two- and three-dimensional finite
Reynolds number buoyant bubbles in a periodic domain are presented. The full
Navier–Stokes equations are solved by a finite difference/front tracking method that
allows a fully deformable interface between the bubbles and the ambient fluid and
the inclusion of surface tension. The rise Reynolds numbers are around 20–30 for the
lowest volume fraction, but decrease as the volume fraction is increased. The rise of
a regular array of bubbles, where the relative positions of the bubbles are fixed, is
compared with the evolution of a freely evolving array. Generally, the freely evolving
array rises slower than the regular one, in contrast to what has been found earlier for
low Reynolds number arrays. The structure of the bubble distribution is examined
and it is found that while the three-dimensional bubbles show a tendency to line up
horizontally, the two-dimensional bubbles are nearly randomly distributed. The effect
of the number of bubbles in each period is examined for the two-dimensional system
and it is found that although the rise Reynolds number is nearly independent of
the number of bubbles, the velocity fluctuations in the liquid (the Reynolds stresses)
increase with the size of the system. While some aspects of the fully three-dimensional
flows, such as the reduction in the rise velocity, are predicted by results for two-
dimensional bubbles, the structure of the bubble distribution is not. The magnitude
of the Reynolds stresses is also greatly over-predicted by the two-dimensional results.

1. Introduction
In two earlier papers (Esmaeeli & Tryggvason 1996, 1998) we used direct numer-

ical simulations to examine the motion of a number of freely evolving bubbles at
low, but finite Reynolds numbers (around 1–2, depending on volume fraction and
dimensionality). The simulations showed that a regular array is unstable and that
it breaks up through two-bubble interactions of the ‘drafting, kissing, and tumbling’
type. Although the motion of a regular array at O(1) Reynolds numbers is fairly
similar to Stokes flow, the evolution of the free array differs because of the strong
two-bubble interactions. In this paper we continue our investigations by looking at a
higher Reynolds number flow.

The need for direct numerical simulations of the full time-dependent Navier–Stokes
equations is widely recognized by multiphase flow researchers. The computational
difficulties in dealing with the unsteady motion of moving phase boundaries have,
however, limited computational modelling to relatively simple systems where con-
siderable simplifications are made in order to make simulations feasible. For flows
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where one phase is dispersed in another one in the form of bubbles, drops, or parti-
cles, these approximations can be put in three categories: potential flow models for
high Reynolds number flows, Stokes flow models for low Reynolds number flows,
and point particle models for dilute intermediate Reynolds number flows. These are
discussed in the remainder of this Section.

For spherical particles in Stokes flow, Brady and collaborators (see Brady 1993, for
a review) simulated the motion of many particles in fully three-dimensional geometries
using ‘Stokesian Dynamics’. They have used the result to explore the behaviour of
various bulk quantities as well as the fundamental interactions between the particles.
Similar techniques have recently been used by other authors (see Ladd 1997, for
example). Simulations of deformable drops are more recent, and a few authors
have used boundary integral methods to simulate the motion of a few drops. Zhou
& Pozrikidis (1993, 1994) followed the evolution of up to twelve two-dimensional
drops in shear flows, Manga & Stone (1993) examined the collision of two three-
dimensional drops, and Loewenberg & Hinch (1996) examined the motion of eight
three-dimensional drops in a shear flow.

To model the motion of bubbles at high Reynolds numbers, Sangani & Didwania
(1993) and Smereka (1993) assumed spherical bubbles moving in a potential flow.
Viscous drag was accounted for by computing the viscous dissipation of the potential
flow. These simulations have shown, among other things, that buoyant bubbles tend
to form large horizontal clusters. Such clusters have not been seen experimentally
and the applicability of this model to real flows is not completely clear at present.
For deformable particles a few authors have applied boundary integral techniques to
follow the motion of a few bubbles. See Chahine (1994) and Blake & Tong (1995),
for example.

For intermediate Reynolds numbers, several authors (including Squires & Eaton
1990; Wang & Maxey 1993; Truesdell & Elghobashi 1994) have examined the motion
of particles (bubbles, drops, or solid objects) in finite Reynolds number flows by
representing the dispersed phase by points moving in an otherwise constant-density
flow. The force on each point particle is specified by analytical models for very low
and very high Reynolds numbers (Stokes flow and potential flow) and by empirical
correlations for finite values. In some cases the particles are assumed to have no effect
on the fluid flow, but in other cases the forces from the particles are added to the
right-hand side of the Navier–Stokes equations. The fundamental assumption is that
the length scales of the fluid motion are much larger than the size of the particles
and that there are no direct particle–particle interactions. Recent computational
studies have provided reliable correlations for the forces on spherical bubbles, see Mei
(1996) and Magnaudet (1997). Furthermore, the wake is usually neglected completely.
Recently, however, Pan & Banerjee (1997) and Maxey & Patel (1997) have presented
simulations where the particle size and its wake are accounted for by distributing the
effect of the particle over a few grid points. See also Climent & Magnaudet (1997)
for an attempt to account for wake effects.

While the point particle approximation is likely to be a good one for very low
volume fractions, and while the potential flow approximation may be a reasonable
one for spherical bubbles at high enough Reynolds numbers, both approximations are
certainly insufficient for high volume fraction flow of bubbles, drops, and particles at
intermediate Reynolds numbers. Here, it is necessary to solve the full Navier–Stokes
equations for the unsteady flow around each moving particle, resolving in detail all
boundary layers and wakes. One of the first attempts to compute the motion of a single
bubble was the seminal work of Ryskin & Leal (1984), who computed the steady-
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state shape of axisymmetric bubbles. More recently, Takagi & Matsumoto (1994) and
Miyata (1996) have conducted three-dimensional simulations of the unsteady motion
of deformable bubbles. For systems of many bubbles and particles, the number of
published articles is small but growing rapidly. Unverdi & Tryggvason (1992a, b)
computed the interactions of two two- and three-dimensional bubbles; Tomiyama
et al. (1994) did a computation of four three-dimensional bubbles; Feng, Hu &
Joseph (1994, 1995) examined the settling of a few two-dimensional particles in
vertical channels; Esmaeeli & Tryggvason (1998) examined the dynamics of two- and
three-dimensional systems with a few bubbles at low Reynolds number; Esmaeeli &
Tryggvason (1996) studied the energy transfer in a two-dimensional system with a
few hundred bubbles at low Reynolds numbers; and Hu (1996) showed the motion
of a few hundred two-dimensional solid spheres. Fully three-dimensional simulations
of up to a hundred solid spheres have been presented by Johnson & Tezduyar (1997).
Here, we continue the studies of Esmaeeli & Tryggvason (1996, 1998) by looking
at the behaviour of two- and three-dimensional bubbly flows at moderate Reynolds
numbers.

2. Formulation and numerical method

We would like to examine a homogeneous cloud of bubbles rising under the
influence of buoyancy. Since it is impractical to model a very large system, we
examine the evolution of bubbles in a fully periodic domain. The Navier–Stokes
equations govern the fluid motion both inside and outside the bubbles and a single
vector equation can be written for the whole flow field. In conservative form it is

∂ρu

∂t
+ ∇ · ρuu = −∇p+ (ρ0 − ρ)g+ ∇ · µ(∇u+ ∇uT ) + σ

∫
F

κ′n′δβ(x− x′)dA′. (2.1)

Here, u is the velocity, p is the pressure, and ρ and µ are the discontinuous density
and viscosity fields, respectively; g is the gravity acceleration and σ is the surface
tension coefficient. Surface forces are added at the interface between the bubbles and
the ambient fluid. δβ is a two- or three-dimensional delta function constructed by
repeated multiplication of one-dimensional delta functions. The dimension is denoted
by β = 2 or 3. κ is the curvature for two-dimensional flows and twice the mean
curvature for three-dimensional flows. n is a unit vector normal to the bubble surface
directed into the bubble. Formally, the integral is over the entire front, thereby adding
the delta functions together to create a force that is concentrated at the interface. x
is the point at which the equation is evaluated and x′ is the position of the front.
The ρ0g term, where ρ0 = (1 − α)ρf + αρb is the average density, is added to the
equations to prevent uniform downward acceleration of the whole flow field. Here,
α is the volume fraction and the subscript f denotes the ambient fluid and b stands
for the fluid inside the bubbles. Note that this equation implicitly enforces the proper
stress conditions at the fluid interface.

Both the bubbles and the ambient fluid are taken to be incompressible, so the
velocity field is divergence free:

∇ · u = 0. (2.2)

Equation (2.2), when combined with the momentum equation leads to a non-separable
elliptic equation for the pressure. We also have equations of state for the density and
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the viscosity:

Dρ

Dt
= 0,

Dµ

Dt
= 0. (2.3)

Here, D/Dt is the material derivative and (2.3) simply states that the density and the
viscosity of each fluid remains constant.

Our numerical technique is based on a direct discretization of the ‘one-field’
formulation, equation (2.1). The basic method is described in Unverdi & Tryggvason
(1992a) and improvements made in our current implementation are discussed by
Esmaeeli & Tryggvason (1998). The method and the code have been tested in various
ways as discussed in detail in Esmaeeli & Tryggvason (1998). In this paper we show
a grid refinement study. Although mass conservation is not explicitly imposed, in
practice mass is well conserved. We have checked the mass conservation in all of our
runs and have found that in all cases the maximum error is small, even when the
bubbles rise nearly a hundred bubble diameters. In the simulations presented here,
we do not allow the bubbles to coalesce. This is done to avoid changes in the system
parameters, such as the size and numbers of bubbles, during the simulation. The
results show, however, that collisions are relatively rare and this is therefore likely
to be a reasonable assumption for the parameter range examined here. In the rare
cases when bubbles collide, we make no attempt to resolve the thin layer between
the bubbles. While this results in a poor prediction of the layer thickness, a detailed
examination of the drainage of a film between two colliding drops (Qian, Tryggvason
& Law 1997) showed that the overall collision dynamics was well predicted for drops
that did not coalesce, even if the film was not fully resolved.

3. Results
The rise of a single buoyant bubble is governed by four non-dimensional numbers.

Two are the ratios of the bubble density and viscosity to the ones of the ambient
fluid: λ = ρb/ρf and γ = µb/µf . The ratios of the material properties are usually small
and have little influence on the motion. If we pick the density of the outer fluid, ρf ,
the ‘effective’ diameter of the bubble, de, and the gravity acceleration, g, to make the
other variables dimensionless, we obtain

N =
ρ2

fd
3
eg

µ2
f

, Eo =
ρfgd

2
e

σ
.

The first one is a Reynolds number squared based on the velocity scale (gde)
1/2, thus

measuring the relative importance of buoyancy and viscous forces. This number is
sometimes called the Galileo or the Archimedes number (see Clift, Grace & Weber
1978). The second one is usually called the Eötvös number and is the ratio of buoyancy
to surface tension. Often, the Morton number, M = Eo3/N2, is used instead of N.
For multi-bubble flows the volume fraction, α, must also be specified.

In this paper we examine the motion of several buoyant bubbles with M = 10−5

(N = 894.427) and Eo = 2. In terms of a physical system, this Morton number
corresponds to a warm motor oil (µf = 0.0125 N s m−2, ρf = 880 kg m−3, σ = 0.03
N m−1, and g = 9.81 m s−2) and the Eötvös number corresponds to a bubble with
an effective diameter of about 2.6 mm.† Experimentally it is found that a single air
bubble with these parameters in an unconfined domain has a slightly ellipsoidal shape

† In Esmaeeli & Tryggvason (1998), the value of µf for engine oil was in error. The correct value
is 0.0394 N s m−2.
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and rises with a Reynolds number of about 31 (figure 2.5 in Clift et al. 1978). Here,
however, the computations are carried out in two- and three-dimensional domains
with fully periodic boundaries, and the finite volume fraction reduces the rise velocity.
Although the periodic array is infinite, only one period is computed and as the
bubbles originally inside the computed period leave through one boundary, new ones
come in through the opposite boundary. While the bubbles in the computed domain
interact freely, exactly the same interactions take place in other periods. As the
domain size is increased, we hope that the importance of the periodic constraint is
reduced. The simplest case is, however, if there is only one bubble in each period. We
will refer to this as the ‘regular’ or ‘fixed array’ case and use it as a reference to which
other results are compared. For dilute bubbly flows where the bubbles rise essentially
independently of each other, we expect such a model to capture the dynamics of a
many bubble system reasonably well.

When presenting our results, we select de, ρf , and g as primary independent variables

and non-dimensionalize length by de and time by (de/g)
1/2

. Velocities are scaled by

(deg)1/2 with the exception of the rise velocity of the bubbles, Wb, which is given as a
Reynolds number, Re = ρfdeWb/µf . The velocity in units of (deg)1/2 can be found by
dividing the Reynolds number by N1/2. The bubble velocities reported here are all the
so-called ‘drift velocities’ (Ishii & Zuber 1979), computed as the difference between
the volume-averaged velocities of the bubbles minus the volume-averaged velocity of
the whole domain. This corresponds to measuring the bubble velocity with respect
to a stationary container where bubbles are injected through the bottom. The liquid
has an average velocity given by Wf = αWb/(1 − α) and the relative velocity of the
bubbles with respect to the liquid is given by Wr = Wb/(1− α).

3.1. Resolution test

Our goal is to shed some light on the behaviour of systems containing many bubbles.
Since we suspect that the collective evolution of a large number of bubbles may show
a marked difference from a system with a small number of bubbles, we would like
to examine as large systems as possible. The motion of each bubble, however, has
to be computed accurately and since the computational resources required for our
simulations are directly related to the size of our grids, we must find a compromise
between the number of grid points required to resolve each bubble and the number of
bubbles we simulate. Figure 1 shows a three-dimensional bubble at a steady state and
a few streamlines in a reference frame moving with the bubble, computed on a 643

grid. The bubble diameter is 0.620 times the size of the periodic domain and therefore
we have about 40 grid points per bubble diameter. The results from a 323 grid are
nearly identical. The rise Reynolds number of the bubble versus time is plotted in
figure 2, where we have also added the results from a 323 grid and a 163 grid.
The figure suggests that 20 grid points per bubble diameter (the 323 grid) will give
adequate resolution. Resolution tests for two-dimensional cases yield similar results
and show, in particular, no changes in the solution with further grid refinement. The
mass is conserved to within 2.5% after the bubble has risen about twenty diameters
for the 323 grid and within 1.4% for the 643 grid. Resolution tests at other volume
fractions, as well as monitoring of the mass conservation for all the results reported
in the following sections, yield comparable results.

Another area where we find it convenient to compromise is in the ratio of the
material properties of the bubbles and the ambient fluid. Since our study is motivated
by the dynamics of gas bubbles in liquids, we would like this ratio to be small
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Figure 1. The steady-state shape of a rising bubble and the streamlines (a) in a frame of reference
moving with the bubble computed on a 643 grid. Here, Eo = 2, M = 10−5, λ = 0.1, γ = 0.1, and
α = 0.1256. In (b), the bubble has been removed to show the flow inside the bubble.
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Figure 2. The rise Reynolds number as a function of time for three different resolutions, 163, 323,
and 643. Here, Eo = 2, M = 10−5, λ = 0.1, γ = 0.1, and α = 0.1256.

(although we note that at high pressures the ratios can be quite large). However,
the pressure solver that we use (mudpack, see Adams 1989) – which is not optimized
to deal with large density jumps – requires many more iterations for small density
ratios and occasionally we have experienced difficulties with convergence. While such
convergence difficulties can generally be overcome by carefully adjusting the numerical
parameters controlling the behaviour of the pressure solver, it is a cumbersome
procedure that increases the wall-clock time required for each simulation. We have
therefore elected to take the density and viscosity of the bubble to be one tenth that
of the liquid in most cases. While this makes the results directly applicable only to
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somewhat contrived systems (liquid–liquid systems such as oils in liquid metals, for
example), we believe that the results yield insight into the behaviour of systems with
much smaller ratios of the material properties. Analytical solutions in the Stokes flow
limit show that if the viscosity of a buoyant bubble is one tenth that of the ambient
fluid the terminal velocity is only reduced by 4.3% from a zero-viscosity bubble.
Similarly, a drop that is ten times more viscous than the ambient fluid will fall at a
terminal speed that is 3.1% higher than that of a solid sphere. The finite density of the
bubble reduces the buoyancy force in direct proportion to its value and also increases
the inertia of the bubbles. The added mass coefficient of a spherical bubble is 0.5
and for a cylindrical bubble it is 1.0 and including the finite bubble density results
in a maximum difference in the acceleration of about 25% for three-dimensional
bubbles and 18% for the two-dimensional ones. In most cases the effect is likely to be
smaller, since the bubbles are not exactly spherical (and the added mass is therefore
larger) and since the inertia force is small compared to buoyancy and the viscous
drag.

We have conducted extensive tests on how the behaviour changes as we change the
ratio of the material properties. Esmaeeli (1995) compared the rise of a single bubble
at low Reynolds number for ratios between 1/5 to 1/300 and found only a weak
dependency on the viscosity ratio (particularly at large values). Similarly, Jan (1994)
showed that for axisymmetric bubbles with Eo = 10 and M = 10−3 the differences
between ratios of 1/40 and 1/400 were minimal. We note that while the effect of the
ratios of material properties is small for bubbles and drops, there are other cases, such
as wind generation of waves and aerodynamic breakup of jets and drops where this
is certainly not the case. The above conclusion also does not apply when the ratios
are of O(1). A similar problem is encountered in boundary integral computations of
drops in Stokes flow where the computational effort increases considerably as the
viscosity ratio is increased. For simulations of many drops, Zhou & Pozrikidis (1993,
1994) and Loewenberg & Hinch (1996), for example, thus elected to assume equal
viscosities for most of their simulations.

3.2. The evolution of three-dimensional arrays

Three three-dimensional simulations of the motion of eight buoyant bubbles are
shown in figures 3 and 4. The computations are done in a fully periodic cubical
domain, resolved by a 643 grid. Gravity points downwards and we follow the motion
as the bubbles rise through several periods. The initial bubble configuration is a
cubic array, perturbed slightly. The bubbles are shown at time zero and a few later
times along with their paths. The computed domain and its periodic extensions in
the vertical direction are outlined by thin lines. The volume fraction for the run in
(a) is 0.0654, 0.1256 for (b) and 0.1963 for (c). The volume fraction is changed by
increasing the size of the bubbles and adjusting other parameters such that other non-
dimensional numbers remain unchanged. The density and viscosity ratios are 0.05 for
the lowest volume fraction simulation and 0.1 for the other two. The first simulation
was done early on in our investigation before we realized that the property ratios
could be increased even further without affecting the results in any serious way. Since
this makes the computations both easier and faster, the two-dimensional simulations
in the later sections were done at these higher ratios as well. The three-dimensional
simulations are, however, sufficiently expensive so that we elected not to repeat the
low volume fraction simulation. The lowest volume fraction simulation was run to
time 120 when the bubbles had risen about 90 diameters and the intermediate volume
fraction simulation was run to time 110 at which the bubbles had risen nearly 70
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Figure 3. The rise of eight three-dimensional bubbles in a periodic domain. The volume fractions
are: α = 0.0654 (a), α = 0.1256 (b), and α = 0.1963 (c). The bubbles are plotted at time zero and a
few later times along with their paths. The last times plotted are at t = 70 for (a), t = 59.6 for (b),
and t = 26 for (c).

diameters. Mass was conserved to within 1.7% for the lowest volume fraction case,
within 2.8% for the intermediate volume fraction run, and 1.6% for the highest
volume fraction run. Due to difficulty in maintaining mass conservation, the highest
volume fraction case was only simulated up to time 26. Note that figure 3 does not
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(c)

(b)(a)

Figure 4. The bubbles and the streamlines in the centre-plane at time t = 70 for α = 0.0654 (a), at
time t = 27.3 for α = 0.1256 (b), and at time t = 8.83 for α = 0.1963 (c).

show the complete paths up to the final times except for the highest volume fraction
case. The α = 0.1256 simulation was run for 12 447 time steps and each step took
about 60 s on an IBM SP2 workstation. The computational requirements for the
other simulations were comparable.

In all three cases the path of each bubble is relatively straight, and although it
is obvious that the bubbles have interacted strongly, they have not dispersed much.
There is, in particular, nearly no horizontal dispersion. To see the flow induced by
the motion, the bubbles and the streamlines in the vertical mid-plane through the
computational domain at selected times are plotted in figure 4, for (a) α = 0.0654 at
t = 70, (b) α = 0.1256 at t = 27.3, and (c) α = 0.1963 at t = 8.83. The figure shows
that the velocity consists of upflow where the bubbles are and downflow in between.
There is little horizontal flow and flow structures larger than the bubbles are not
visible.

The time evolution of several averaged quantities is shown in figures 5 to 7. The
rise Reynolds number, averaged over the eight bubbles is plotted in figure 5. The rise
Reynolds number of a completely regular array is also shown (dashed line) as well as
the time-averaged value of the average bubble Reynolds number (solid line), defined
by

〈Re〉 =
ρfde〈Wb〉

µf
,
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Figure 5. The average rise Reynolds number of the bubbles in figures 3 and 4 as a function of
time. The result for a regular array at the same volume fraction is also shown. The lengths of the
thick lines representing the average Reynolds numbers show the times over which the averaging
were done. (a) α = 0.0654, (b) α = 0.1256, (c) α = 0.1963.

where

〈Wb〉 =
1

Nb∆T

∫
∆T

Nb∑
i=1

wbidt. (3.1)

Here, Nb is the number of bubbles, ∆T is the time over which the average is taken,
and wbi is the instantaneous vertical velocity of the centroid of bubble i obtained by
computing its volume-averaged velocity (see Esmaeeli & Tryggvason 1998 for more
detail). The instantaneous velocities of the centroids of the bubbles in the horizontal
directions are computed by the same method. The time average is not computed from
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Figure 6. The liquid Reynolds stresses and the liquid fluctuation kinetic energy, scaled by deg, for
the bubbles in figures 3 and 4 as a function of time. k̃′ for a regular array at the same volume fraction
is also shown. The lengths of the thick lines representing the average fluctuation kinetic energies
show the times over which the averaging were done. (a) α = 0.0654, (b) α = 0.1256, (c) α = 0.1963.

time zero, to avoid the initial transient and the length of the solid line represents
∆T . At the earliest time, when the array is still regular, the bubbles approach a
rise Reynolds number equal to that of a regular array. As the initially regular array
breaks up, the rise Reynolds number decreases. For the lowest volume fraction we
see relatively large fluctuations in the average Reynolds number. These fluctuations
decrease, both in wavelength and amplitude, as the volume fraction increases. The
large increase in the Reynolds number near the end of the lowest volume fraction
simulation suggests that in addition to relatively short-time-scale fluctuations, other
longer-time-scale variations may also be present. Note that the reduction in the
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average rise Reynolds number for the freely evolving arrays seen here is exactly
opposite to what we found in Esmaeeli & Tryggvason (1998) where freely evolving
low Reynolds number bubbles always rose faster than a regular array (in agreement
with Stokes flow prediction, see Saffman 1973).

The liquid Reynolds stresses, computed by integrating the velocity fluctuations in
the liquid, for all three runs are plotted in figure 6. The vertical component k′V =
〈w′w′〉 is plotted separately, but the horizontal components are averaged and we plot
k′H = 1

2
(〈u′u′〉+ 〈v′v′〉). In all three cases 〈u′u′〉 and 〈v′v′〉 are nearly identical. We also

plot the fluctuation kinetic energy, k′ = 1
2
(〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉). Both the Reynolds

stresses and k′ are non-dimensionalized by deg and are denoted by k̃′H , k̃′V , and k̃′. For
all three runs the vertical components are significantly larger than the horizontal ones.
The fluctuation kinetic energy is close to that of a regular array initially, but then
decays and settles down to a relatively constant value that increases with increasing
volume fraction. Since the fluctuation kinetic energy of a regular array decreases
slightly with increasing volume fraction, the difference between this quantity for a
regular array and a freely evolving one decreases as the volume fraction increases.
The lengths of the thick lines show the times over which the averages are taken. The
cross-terms, 〈u′v′〉, 〈u′w′〉, and 〈v′w′〉, remain nearly zero and are not plotted here.

Several authors (see Drew & Lahey 1993, for example) have used the potential flow
solution for flow over a sphere to model the velocity fluctuations in the liquid. For
three-dimensional flows the vertical component is 〈w′w′〉 = 4α〈Wb〉2/20, the horizon-
tal components are 〈u′u′〉 = 〈v′v′〉 = 3α〈Wb〉2/20, and the cross-terms are zero. For
two-dimensional flows 〈u′u′〉 = 〈v′v′〉 = α〈Wb〉2/2. This results in k′ = 1

4
α〈Wb〉2 for

three-dimensional bubbles and k′ = 1
2
α〈Wb〉2 for two-dimensional ones. Here, 〈Wb〉

is the steady-state rise velocity of a bubble. Although the Reynolds numbers are
low here, we have compared the kinetic energy fluctuations with this model. For the
kinetic energy we have

k′

α〈Wb〉2
= k̃′

N

α〈Re〉2 = 0.25,

where k̃′ is the fluctuation kinetic energy non-dimensionalized by deg as in figure
6. Using the values for the free arrays in figure 5 and 6, we find that k′/α〈Wb〉2 =

0.02N/α〈Re〉2 = 0.45 for the lowest volume fraction and slightly higher for the higher
volume fractions (see figure 21). The values for the regular array are also higher,
presumably because of stronger wake effects compared to the potential flow model.
Note also that the difference between the horizontal and the vertical velocity fluctua-
tions is larger than that predicted by the potential flow model. The Reynolds stresses
in homogeneous bubbly flows has been measured by Lance & Bataille (1991) who
found the horizontal and the vertical components to be of comparable magnitude.
Their Reynolds number, however, was much larger than what is used here (a single 5
mm air bubble in water rises at a Reynolds number of about 1000) and their bubbles
generally rose along a helical path.

In figure 7, the average velocity fluctuations of the bubbles, defined by

K ′H =
1

Nb

Nb∑
i=1

(wbi −Wb)
2, (3.2)

K ′V =
1

Nb

Nb∑
i=1

1
2
((ubi −Ub)

2 + (vbi − Vb)2), (3.3)
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Figure 7. The average horizontal and vertical velocity fluctuations of the bubbles in figures 3
and 4 as a function of time. The fluctuations are non-dimensionalized by deg. (a) α = 0.0654,
(b) α = 0.1256, (c) α = 0.1963.

are shown. Here, ubi and vbi are the horizontal velocities of the centroid of bubble
i and Ub, Vb, and Wb are the instantaneous velocities of the centroid of all the
bubbles in the horizontal and vertical directions. In these simulations, Ub and Vb
are essentially zero. The fluctuations have been non-dimensionalized by deg. Note
that the velocity fluctuations are not simply the Reynolds stresses of the fluid in
the bubbles, since the recirculation inside each bubble is not included. We have also
examined the full Reynolds stresses and generally found that the recirculation is well
correlated with the average rise velocity. While fluctuations in the bubbles velocity
have a strong influence on the motion of the continuous phase, the recirculation is
of much smaller importance since the density of the bubbles is small. In all cases the
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vertical fluctuations are much larger than the horizontal ones. The fluctuations are still
undergoing large changes and we have not computed the time averages since the large
‘humps’ in the values near the ends of the α = 0.1256 and α = 0.1963 runs make the
convergence of such averages questionable. Note that the fluctuations have dropped
to nearly zero at the end of the low volume fraction run (α = 0.0654), indicating that
the bubbles are all rising together. The potential flow models of Sangani & Didwania
(1993) and Smereka (1993) predict that the bubble rise velocities all become equal
and the bubbles form horizontal ‘rafts’. In this case, however, an examination of the
bubbles near the end of the run does not show any ‘rafting’ and indeed the velocities
increase, confirming the absence of horizontal pairs. We therefore believe that the
decrease in the velocity fluctuations is simply a transient effect and that the velocity
fluctuations will increase again.

Information about the microstructure of the bubble distribution can be obtained
by examining the pair distribution function

G(r) =
V

Nb(Nb − 1)

〈
Nb∑
i=1

Nb∑
j=1
j 6=i

δ(r − rij)
〉
. (3.4)

Here, r is a distance vector from the centroid of the reference bubble and rij = ri− rj
is the distance vector between the centroids of bubble i and bubble j. V is the total
volume of the system. G is obviously not a smooth function and sometimes the
Fourier transform of G, the so-called structure function, is used instead (see e.g. Ladd
1993). Examination of the low-wavenumber modes then yields information about
the distribution of the delta functions. Here, we take a somewhat more elementary
approach and in figure 8 we simply mark the (r, θ) position of each point where the
delta function is non-zero for 26, 26, and 16 evenly spaced time intervals (excluding
t = 0) for α = 0.0654 (a), 0.1256 (b), and 0.1963 (c), respectively; r is the distance
from the reference bubble and θ is the angle between rij and the vertical axis. For
reference, circles spaced one radius apart mark the distances from the origin and
radial lines π/6 radians apart show the angles with reference to the vertical axis. Since
the computed domain is a periodic cube, we only examine bubbles that are located
within half the cube dimension from the reference bubble. The dashed circles in (b)
and (c) mark these regions. If the bubbles remain completely spherical, no bubble
centre could lie within the second circle.

Although these plots are perhaps somewhat difficult to interpret, two observations
stand out. First is the fact that there are very few bubbles directly ahead of (and
behind) the reference bubble. This must, however, be interpreted with some care since
we do not distinguish between the angular coordinates of the bubble positions, so as
we move away from the reference bubble the volume becomes larger and we expect
to find more bubbles at larger radial coordinates. The second observation is that
for the lowest volume fraction there are no bubbles touching the reference bubble
and for the higher volume fractions touching appears to be rather rare. This is as
we would expect: two bubbles in a side-by-side position repel each other at finite
Reynolds number if they are close enough (but attract weakly if separated further)
and at the lowest volume fraction they have the space to do so (see Kim, Elghobashi
& Sirignano 1993; Legendre & Magnaudet 1998).

To examine the close interactions in more detail, we have computed the weighted
average of G versus time for the interval de < r < 1.75de for α = 0.0654; de < r < 1.5de
for α = 0.1256; and de < r < 1.25de for α = 0.1963. Different radial extents of the
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Figure 8. The relative positions of the bubbles with respect to a bubble at the origin (open
circles). The data are obtained at 26 equispaced times (excluding time zero) for (a) α = 0.0654 and
(b) α = 0.1256, and at 16 equispaced times for (c) α = 0.1963. The first and last times are t = 0.38
and t = 118.7 for (a), t = 0.24 and t = 105.9 for (b), and t = 0.18 and t = 26.0 for (c).

integration volume are selected to avoid the periodic boundaries. The weighted
average is defined by

A =
1

V

∫
G(r)P 0

2 (cosθ)dv, (3.5)
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Figure 9. The weighted average of G, A, in a shell close to the reference bubble and the average
G, 〈G〉, versus time. Data are obtained at 49 equispaced times for (a) α = 0.0654, at 61 equispaced
times for (b) α = 0.1256, and at 20 equispaced times for (c) α = 0.1963.

where P 0
2 = 3 cos2θ − 1 is the second Legendre polynomial (Ladd 1997). We have

also computed the average of G for the same region by

〈G〉 =
1

V

∫
G(r)dv. (3.6)

Figure 9 shows A and 〈G〉 versus time for the three runs. Initially there are bubbles
located within the shell that we are looking at and therefore the lines do not start from
zero. 〈G〉 fluctuates around unity as we expect, since we are examining a relatively
large part of the computed domain, but A becomes clearly negative as time increases,
indicating a preference for horizontally oriented bubble pairs. This supports the
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observation made about figure 8 that there are relatively few bubbles located directly
behind (and ahead of) the reference bubble. The lack of bubbles on the symmetry
axis lends some support to the argument of Koch (1993) who predicted that bubbles
would be expelled out of the wake of other bubbles at moderate Reynolds numbers.
This hypothesis was important for his subsequent argument that the variance of
the bubble velocity remained finite due to screening. The lack of bubbles in the
wake is possibly only true for nearly spherical bubbles, since it is well known that
axisymmetric deformable bubbles oriented in tandem will attract each other. Spherical
or nearly spherical bubbles, however, do not attract each other as strongly and inviscid
spherical bubbles actually repel each other (Yuan & Prosperetti 1994). Furthermore,
a tandem orientation of two spherical bubbles is an unstable configuration, and a
bubble approaching another one will be pushed to the side before collision. Note that
vorticity generation which is responsible for both the wake effects and the repulsion
of horizontally oriented bubbles when the separation distance is small is completely
absent in the potential flow models of Sangani & Didwania (1993) and Smereka
(1993). The lack of these effects is likely to be the reason for the strong ‘rafting’ seen
in those simulations.

3.3. The evolution of two-dimensional arrays

The large computer time needed for the three-dimensional simulations in the preceding
section makes it, as yet, impractical to simulate much larger systems. In order to
examine what happens when the size of the system is increased and the flow is allowed
to evolve for a longer time, we have done several two-dimensional simulations. Two-
dimensionality not only reduces the computational cost substantially, but also allows
us to obtain a statistically steady state more easily, since the bubble interactions are
stronger than in three dimensions.

In figures 10 and 11 the evolution of an initially nearly regular array of sixteen
bubbles rising due to buoyancy is shown. The paths of the bubbles are plotted
in figure 10. The bubbles initially rise straight up. The initially regular array is
unstable, however, and after having moved about one computational domain (ten
bubble diameters), it breaks up. As the bubbles rise, their paths often show a rapid
change of direction as a result of close interactions of the bubbles. At the end of
the simulation, the bubbles are spread out over about five periods vertically, but
considerably less horizontally, showing that horizontal dispersion is much smaller
than vertical dispersion. Even though the volume fraction for this simulation is
the same as that in figure 3(b), the paths of the two-dimensional bubbles show
much greater fluctuations than the three-dimensional ones due to the much stronger
interactions of the two-dimensional bubbles. The bubble shapes and twenty evenly
spaced streamlines in a fixed reference frame are plotted at twenty equispaced times
in figure 11, starting with the initial conditions in the top left corner. Time increases
to the right and down. Unlike the three-dimensional plots in figures 3 and 4, where
we followed the bubbles as they moved through different periods, here we plot the
bubbles occupying the original period at any given time. The initial array has been
perturbed slightly and one row of the bubbles is coloured black to make it easier
to follow the motion. The bubble centres are initially placed 2.5 diameters apart,
resulting in a volume fraction of α = 0.1256. A 2562 grid is used, resulting in about 25
grid points per bubble diameter. Based on the results from figures 1 and 2, and similar
two-dimensional resolution tests, we expect this grid to provide sufficient resolution.
Initially, as the bubble array rises, it retains its configuration, but in the third and
the fourth frames the array is breaking up rapidly. The motion after the array has
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Figure 10. The paths of sixteen two-dimensional bubbles. The thick line denotes the centroid.
Notice that the size of the circles marking the initial and the final position of each bubble is not to
scale.

completely broken up is rather chaotic. However, we can identify one or two large
vortices in most of the frames, and we generally find several bubbles moving upward
at the edges of these vortices, creating a strong upflow current. In these currents
we often see bubbles move upward together. Bubbles that touch are, however, rare.
The vortices seen here are relatively weak and are generated by the bubbles moving
upward. Therefore, we do not expect to see bubbles forced into the vortex centres, as
would happen if the vortices were stronger. Because there is no net upward motion of
the liquid, the strong upward currents have to be balanced by downflow. Since there
are fewer bubbles there, the downflow is generally much weaker than the upflow. In
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Figure 11. The unsteady rise of sixteen bubbles. The bubbles and the stream function in a stationary
frame of reference are shown at twenty equispaced times. The initial positions of the bubbles are
shown in the top left-hand corner frame and time increases to the right and down. The final time
is t = 150.2. One row of the bubbles is coloured black.

several frames we also see strong horizontal flow. Neither the large-scale vortices nor
the horizontal motion was seen in figure 4 for the three-dimensional flows, possibly
due to the smaller size of the system.

In figures 12 and 13 we show the time evolution of several of the integrated
or space-averaged quantities for this flow. The bubble Reynolds number, averaged
over the sixteen bubbles is plotted in figure 12. Two horizontal lines, one repre-
senting the steady rise Reynolds number of a completely regular array and another
one showing the time-averaged value of the average bubble Reynolds number, are
also included. The time average is computed from time 30.0 to the end of the
run in order to exclude the initial transient. At the earliest time, while the ar-
ray is still regular, the bubbles approach a rise Reynolds number equal to that
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Figure 12. The average bubble rise Reynolds number for the simulation in figures 10 and 11. The
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Figure 13. The liquid Reynolds stresses (〈ũ′ũ′〉, 〈ũ′ṽ′〉, and 〈ṽ′ṽ′〉) for the bubbles in figures 10 and
11 as a function of time. The thick dashed and solid lines show the horizontal and vertical Reynolds
stresses for a regular array, respectively. The Reynolds stresses are non-dimensionalized by deg.

of a regular array (Re = 23.4 for this volume fraction). As the initial configura-
tion breaks up, the Reynolds number first decreases sharply, and then settles into
an irregular and oscillatory pattern, with a mean that is obviously substantially
lower than what we find for a regular array. While the general trend is in agree-
ment with the three-dimensional results (and therefore opposite to what Esmaeeli &
Tryggvason 1998 found for freely evolving low Reynolds number bubbles) the fluctu-
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Figure 14. The dissipation rate versus time for the simulation in figures 10 and 11. The thick
horizontal lines show the time averages for the free array. The lengths of the lines show the times
over which the averaging was done.

ations are much larger. Note that the fluctuations contain both relatively short waves
(about 5 non-dimensional time units) and longer waves.

The Reynolds stresses for the liquid are plotted versus time in figure 13. As we saw
for the three-dimensional case, the vertical component is much larger initially, while
the array is still regular, but unlike the three-dimensional results, both components
are of comparable magnitudes once the array breaks up. Consequently, the fluctuation
kinetic energy is larger for the freely evolving array than for the regular one in the
two-dimensional case, whereas it was smaller for the three-dimensional simulations.
The cross-term, 〈u′v′〉, remains nearly zero, as it should. For a two-dimensional flow,
the potential flow model (of § 3.2) predicts that

k′

α〈Wb〉2
= k̃′

N

α〈Re〉2 = 0.5.

Using the data from figure 13, we find that the time-averaged fluctuation kinetic
energy is k̃′ = 0.215. This yields k′/α〈Wb〉2 = 0.215N/α〈Re〉2 = 5.24. This large
difference will be examined further in the next section.

While the fluctuation kinetic energy of the liquid and the bubbles give information
about the magnitude of the perturbations, they contain no information about the
spatial scales of the motion. In modelling of single-phase turbulent flows, the turbulent
kinetic energy is usually supplemented by the fluctuation energy dissipation to provide
such information. To explain why a freely evolving array moves slower than a regular
one, we have computed the average dissipation rate by

ε =
1

S

1

2

∫
µ
∑
ij

(
∂ui

∂xj
+
∂uj

∂xi

)2

da, (3.7)

where the integration is over the whole domain and S is the total area for the two-
dimensional simulations. In figure 14 we plot the dissipation rate versus time. The
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lower curve is ε̃ = ε/ρf(g
3de)

1/2
, where ε̃ is the non-dimensional dissipation based

on the non-dimensionalization used earlier. The dissipation rate is high initially but
then levels off to a somewhat smaller average value, showing that the dissipation
decreases when the bubbles slow down, as we would expect. For linear flows (Stokes
flow and potential flow) the velocity gradients are proportional to the bubble velocity
so dissipation must be proportional to the bubble velocity squared. Assuming that
the same is true here, we have also non-dimensionalized ε by µf(W

2
b/de), where Wb

is the instantaneous velocity of the centroid of the sixteen bubbles. The top curve
in the figure shows the non-dimensional dissipation using Wb as velocity scale. The
solid horizontal line is its time average. The plot shows that the dissipation rate early
on, while the array is still regular, is about 20% lower than the average after the
array starts to move irregularly. Thus, the increased dissipation when the bubbles
move freely is the reason for the lower rise velocity. We believe that the increased
dissipation for the freely evolving finite Reynolds number array is due to a relatively
larger amount of vorticity deposited by the unsteady bubble motion. To examine that,
we have computed the integral of the vorticity squared (enstropy) in the continuous
phase and found that the enstropy divided by the square of time-averaged velocity is
larger (by about 25%) in the freely evolving array. Since dissipation is proportional
to the vorticity squared (plus terms proportional to the motion of the boundary) this
increase slows down the bubbles. We note that a similar phenomenon is also seen
for deformable bubbles at higher Reynolds number which slow down if they start to
‘wobble’. Although we believe that the unsteadiness of the motion is an important
factor in increasing the net vorticity deposition, we note that Koch & Ladd (1997)
found that irregularly positioned circular cylinders had a larger drag compared to a
regular array of cylinders.

The average dissipation rate can also be estimated from the bubble rise Reynolds
number. At steady state, the rate of work done by the bubbles on the fluid must
be balanced by the dissipation rate. This balance can be derived from equation (2.1)
which shows, after dropping terms that are identically zero, that

ε =
1

S

∫
(ρ0 − ρ)u · gda (3.8)

at steady state. After carrying out the integration, using the definition of the volume
fraction, and that the net momentum flux is zero, we find that the non-dimensional
dissipation rate is

ε̃ =
αRe

N1/2
((1− α+ αλ)(1− λ)). (3.9)

Using the average Reynolds number from figure 12, we obtain ε̃ = 0.058, which is
about 2% lower than the average (dashed horizontal line) in figure 14.

Although we believe that the three-dimensional simulations in § 3.2 have reached a
statistically steady state, the time over which we followed the motion is not very long
and the uncertainty of the various time-averaged quantities therefore is relatively
large. The two-dimensional simulations have been carried out for a longer non-
dimensional time, but the fluctuations are still large and we anticipate the need to
average over a long time to obtain fully converged time averages. To examine how
well the time-averaged quantities have converged, we have conducted two additional
simulations for the parameters used in figures 10 and 11 but with different initial
positions of the bubbles. The results are similar to that of figures 10 and 11 after the
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Case no. Grid size Re 〈ũ′ũ′〉l 〈ũ′ṽ′〉l 〈ṽ′ṽ′〉l
1 2562 16.092 0.1612 −0.0014 0.1665
2 2562 16.368 0.2005 0.0009 0.2092
3 2562 16.807 0.2465 −0.0112 0.2181

Table 1. Time-averaged Reynolds numbers and Reynolds stresses of for sixteen bubbles with three
different initial positions. For cases 1 and 2 we used two irregular distributions of bubbles as initial
conditions. For case 3 a weakly perturbed regular array was used.
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Figure 15. The bubble pair distribution function for sixteen bubbles in a periodic cell, computed
by averaging the results from three simulations at eighteen equispaced times. 〈G〉 is shown versus θ
for four intervals of ∆r = de.

array breaks up, although the detailed evolution of each run is very different. While
the time-averaged quantities for each run are not identical, they are relatively close,
see table 1.

The larger number of longer runs with more bubbles for the two-dimensional case
allows us to get a more complete picture of the pair distribution function compared
to the three-dimensional ones. We have computed the pair distribution function
for eighteen equispaced times for the three sixteen-bubble runs. The average G is
computed over small increments of θ, the angle between rij and the vertical axis, and
over small increments of r, the distance from the reference bubble. In figure 15 we
plot 〈G(θ)〉∆r for four intervals between r/de = 1 and 5. Here, ∆θ = π/8 and ∆r = de.
The plot shows that for the first interval, 〈G(θ)〉∆r has a very small maximum for
θ = π/2 and a very small minimum for θ = 0, but at larger radii, 〈G(θ)〉∆r is essentially
constant. To condense these information even further, we have also computed the
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Figure 16. The weighted average of the bubble pair distribution function, A2d(r), versus
non-dimensional radius, averaged over three runs at eighteen equispaced times. The standard
deviations of the averages are shown by vertical error bars.

weighted average of G by

A2d(r) =

∫
∆r

∫ 2π

0

G(r, θ) cos 2θda. (3.10)

A negative value of A2d indicates a preference for a horizontal alignment of the
bubbles and if the bubble distribution is isotropic, A2d = 0. In figure 16 we plot this
quantity for the same increments in r as used in figure 15. For r < de, A2d is not
defined since there are no bubbles there. For de < r < 2de, A2d is negative but a small
positive value is found for the other radii. The uncertainty is, however, large and we
expect A2d(r) to approach zero as r becomes larger. The relatively uniform distribution
of bubbles found here is clearly opposite to what is found for the three-dimensional
bubbles where there was a clear preference for a side-by-side orientation. Comparison
of these results with comparable quantities at lower Reynolds numbers in Esmaeeli
& Tryggvason (1998) reveals that the three-dimensional bubbles show an increased
tendency toward a side-by-side orientation as the Reynolds number is increased, but
the two-dimensional results show the opposite trend.

3.4. Decomposition of the two-dimensional Reynolds stresses

When bubbles move through a quiescent liquid, their motion causes velocity fluctu-
ations in the liquid even though turbulent motion due to vorticity is absent. These
velocity fluctuations lead to Reynolds stress terms in the averaged two-fluid equations
and are usually referred to as ‘pseudo’ turbulence. In addition, the bubbles can gen-
erate unsteady vorticity that causes ‘real’ turbulence. The velocity fluctuations plotted
in figure 6 and 13 are the total velocity fluctuations. A number of authors have
modelled the velocity fluctuations due to the bubble motion (the ‘pseudo’ turbulence)
by using the velocity field of an isolated spherical bubble moving in a potential flow.
If the Reynolds number is sufficiently high, and the volume fraction and the Eötvös
number are low, this model can be expected to give a reasonable estimate for the
velocity fluctuations.
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Figure 17. (a) The stream function and (b) the vorticity field at time 75.9 for the simulation in
figures 10 and 11 (middle frame) along with the stream function computed by assuming Stokes flow
(left frame) and potential flow (right frame) and the same bubble velocities.

Although it is perhaps somewhat surprising that the fluctuation kinetic energy
for the three-dimensional simulations is of the same order as the predictions of the
potential flow model (the Reynolds number is, after all, not very high here), the
large difference between the potential flow and the two-dimensional results is even
more unexpected. In order to examine the two-dimensional results in more detail,
we have computed the potential flow around the two-dimensional bubbles at a few
times and compared the ‘pseudo’ turbulence with the total Reynolds stresses. Before
we present the results, we describe briefly how we do this in the context of the ‘one-
field’ formulation. The fundamental idea is that the surface of the bubble is a vortex
sheet, separating the flow inside the bubble (which is not necessarily irrotational)
and the ambient potential flow. We find the strength of the vortex sheet (which is
represented on the fixed grid as a region of concentrated vorticity) iteratively. First we
set the velocity outside the bubble equal to zero, leaving the velocity inside the bubble
unchanged. Then we numerically differentiate the velocity to find the vorticity (which
is non-zero only inside the bubbles and at their boundaries). Given the vorticity we
compute the stream function by solving a Poisson equation and find a new velocity
field by numerical differentiation. Initially, the velocity inside the bubble computed
in this way is different from the original one. We therefore set the velocity inside
the bubble to its original value again, leaving the outside velocity unchanged, and
repeat the procedure. This iteration is continued until the irrotational velocity field
outside the bubble does not change. The process converges relatively fast and we
have verified that it produces the correct solution by comparing the result with the
flow field due to a periodic array of dipoles. We have also computed the Stokes flow
around the bubbles by a similar procedure where we keep the velocity inside the
bubbles unchanged but allow vorticity to diffuse so that ∇2ω = 0 and ∇2ψ = −ω in
the domain outside the bubbles. Again, this iteration converges relatively fast.
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Figure 18. Vertical and horizontal Reynolds stresses of the ambient fluid versus time for the
original, Stokes, and potential flow. Thick lines represents Reynolds stresses for original flow. The
vertical stresses are shown by the solid lines and the horizontal stresses are shown by dashed lines.
The Reynolds stresses are non-dimensionalized by deg.

In figure 17(a) the streamlines at time 75.9 from the computations in figures 10 and
11 (centre) are compared to the streamlines of a potential flow (right) and a Stokes
flow (left) computed in the way described above. Although the bubble velocities
are the same, the potential flow has relatively little in common with the original
velocity field. The velocity outside the bubbles is generally much smaller and the
strong ‘streams’ seen in the original field are nearly absent. The Stokes flow shows
much stronger similarities, although several differences are immediately noticeable.
The downflow ‘streams’ in the left half of the domain are stronger, and the wake
behind the bubbles in the top right corner is absent. The corresponding vorticity fields
are shown in figure 17(b). For the potential flow the vorticity is bound to the surface
of the bubbles as an infinitely thin vortex sheet, but for the Stokes flow the vorticity
diffuses sufficiently rapidly away from the bubble surface so that its Laplacian is zero.
For intermediate Reynolds numbers the vorticity is both diffused and advected from
the bubble surface, resulting in higher vorticity values in the flow outside the bubbles
(the integrated enstropy is about 18% higher than that of the Stokes flow). Figure 18
shows the horizontal and vertical Reynolds stresses versus time (computed at seven
times only) for the bubble-generated potential flow, the original velocity field (shown
by thick lines), and the Stokes flow. The vertical and horizontal Reynolds stresses are
shown by solid and dashed lines, respectively. It is clear that the potential flow yields
much smaller Reynolds stresses than the finite Reynolds number flow (about one
fifth). The Stokes flow field, on the other hand, produces fluctuation kinetic energy
that is only slightly higher than that of the original flow. The vertical component
of the Reynolds stresses is somewhat higher than the horizontal component for the
Stokes flow and the finite Reynolds number one, but the horizontal and vertical
components are about equal for the potential flow, as we expect.

3.5. Effect of system size

Although the simulations in § 3.3 resulted in relatively well-converged averaged quan-
tities, the question remains whether the results are applicable to systems with an
arbitrary number of bubbles. While it seems reasonable to expect that if the largest
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Figure 19. (a) Average bubble rise Reynolds number versus number of bubbles. The Reynolds
numbers are obtained by taking the time average of the instantaneous velocity of the centroid of
the bubbles and ensemble average over three simulations with different initial bubbles positions. (b)
Average velocity fluctuations in the ambient liquid versus number of bubbles. The fluctuations are
non-dimensionalized by deg.

flow scales are much smaller than the dimension of the system, then the evolution
would be independent of the system size, we do not know, a priori, the sizes of
the largest flow scales. This question is particularly relevant for the two-dimensional
results, since we have shown in Esmaeeli & Tryggvason (1996) that for low Reynolds
number bubbly flows there is an inverse energy cascade that feeds energy to lower
wavenumbers in a way similar to what is seen for two-dimensional turbulence. This
leads to a continuous growth of the largest flow scales and can prevent the emergence
of a statistically steady state. Furthermore, even if the system does reach a steady
state, we need to know how large a system needs to be simulated in order to yield
averaged quantities that are representative of a truly infinitely large system.

To address this issue, we have computed the evolution of several two-dimensional
systems with different numbers of bubbles. The non-dimensional parameters are the
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same as those in the runs discussed earlier and the grid size has been selected in such
a way that the resolution per bubble remains the same. For each system size, we have
conducted three simulations, one with a slightly perturbed regular bubble array as
initial conditions and the other two starting from more irregular bubble distributions.
All the simulations were carried out until non-dimensional time 158. In figure 19 we
plot the time-averaged bubble Reynolds number (a) and the Reynolds stresses (b)
versus the number of bubbles in the system. The rise Reynolds number is essentially
independent of the number of bubbles but does not approach the one-bubble result
smoothly. The Reynolds stresses, on the other hand, increase slightly with the number
of bubbles. The largest difference is between one bubble (regular array) and four freely
evolving bubbles, showing the importance of the unsteady bubble interactions. Based
on the results of Esmaeeli & Tryggvason (1996) for many two-dimensional bubbles at
low Reynolds numbers, we believe that the increase in velocity fluctuations is a result
of an inverse energy cascade where a fraction of the work done on the liquid by the
bubbles goes to increase the energy content of the low-wavenumber modes. If that is
the case here, then the evolution of a large three-dimensional system will be different,
although flow structures much larger than the bubbles could certainly appear.

3.6. Effect of volume fraction

For a homogeneous distribution of equal size bubbles, the volume fraction is the
most important controlling parameter and determining how the various properties
of the mixture change with volume fraction is of key interest. In addition to the
three-dimensional simulations in § 3.2, we have conducted several two-dimensional
simulations of sixteen bubbles with different volume fractions. Three simulations were
done for each volume fraction. All the simulations were started from similar initial
conditions (perturbed regular arrays) and were carried out until an approximately
steady state was reached. The grid was adjusted in such a way that the resolution per
bubble was the same as in figures 10 and 11.

The average rise Reynolds number is plotted versus volume fraction in figure 20.
At low volume fraction the regular two-dimensional arrays rise faster than the two-
dimensional freely evolving ones, but the Reynolds numbers of the regular arrays
decrease faster than those of the freely evolving arrays and at about α = 0.3 the
Reynolds numbers are the same. It is perhaps at first surprising to find a large
difference between the fixed and the free two-dimensional arrays for low volume
fractions. Intuitively, we would expect the difference to approach zero in the limit of
α → 0 (as we found at low Reynolds numbers in Esmaeeli & Tryggvason 1998). We
believe that the reason for the apparent divergence as the volume fraction decreases
is that the bubbles are still interacting strongly and the unsteady motion causes a
larger dissipation than in the steady-state array. As the volume fraction is increased,
the ‘mobility’ of the bubbles is reduced and the results are more like what is seen
for a regular array. At very low volume fractions, where the bubbles are essentially
independent of each other, we would, of course, expect the free array and the fixed one
to yield the same rise velocity. We believe, however, that this volume fraction is much
lower than what we have simulated so far. The average rise Reynolds numbers for the
three-dimensional simulations are also shown in figure 20 along with the results for
a regular three-dimensional array at the same volume fractions. Those results show a
similar trend to the two-dimensional one, but the difference between a regular array
and a freely evolving one is much smaller. Experimental results show considerable
reduction in the rise velocity of bubbles as the volume fraction is increased. Ishii &
Zuber (1979) summarized a large amount of data for bubbles, drops, and particles
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Figure 20. The bubble Reynolds number versus volume fraction. The Reynolds numbers for both
two- and three-dimensional free arrays are obtained by taking time average of the instantaneous
velocity of the centroid. The results for the two-dimensional free arrays are obtained by taking
the ensemble average of the time-averaged Reynolds number over three simulations with different
initial bubble positions. The Ishii–Zuber (1979) correlation is added for comparison.

and found correlations for the drift velocity in the various flow regimes. For bubbles
they identified the ‘Stokes regime’, where the drift velocity decreased as (1 − α)3;
the ‘undistorted particle regime’, where the relationship was slightly more complex;
and the ‘distorted particle regime’, where the drift velocity decreased as (1− α)1.7. At
higher flow rates, in the ‘churn turbulent regime’ the drift velocity was found to be
independent of the volume fraction. Our results fall in the ‘undistorted particle regime’
and in figure 20 we include the Ishii–Zuber correlation as a thick dashed line. While
the correlation predicts values comparable to the simulated ones, it differs in two
aspects. The slope of the experimental curve is smaller and the prediction for α = 0
is lower than an extrapolation of the simulated values. The difference at zero volume
is most likely due to uncertainties in the correlation. The experimental correlations
used by Clift et al. (1978) to produce their ‘bubble map’ (figure 2.5) yields a rise
Reynolds number of about 30 or about 18% higher than the Ishii–Zuber correlation.
It is also likely that both correlations were based on bubbles where surfactant effects
(absent in the simulations) may have played a role. The difference in slope is perhaps
more surprising. The results for the two-dimensional bubbles show a large difference
between the slope of the Reynolds number versus volume fraction curve for a free
and a fixed two-dimensional array due to the large reduction in rise velocity at low
volume fraction where the ‘mobility’ of the bubbles is larger. The fact that the slope
is nearly the same for the free and the fixed three-dimensional array suggests that
the small number of bubbles may be the reason for the difference with the Ishii–
Zuber correlation. Indeed, preliminary computations of a larger system (64 bubbles)
with comparable parameters show about twice the reduction found here (Bunner &
Tryggvason 1997). Further studies of larger systems should help clarify this issue.

In figure 21, we plot the kinetic energy fluctuations versus volume fraction. The-
oretical results based on potential flow theory predict that k′/α〈Wb〉2 is a constant
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Figure 21. The effect of the volume fraction on the average fluctuation kinetic energy, k′, of the
ambient fluid. Data points for the free arrays are obtained by taking the time average over the
instantaneous velocity fluctuations (for both two- and three-dimensional bubbles) and taking the
ensemble average over three simulations of two-dimensional bubbles with different initial bubble

positions. k′ is scaled by α〈Wb〉2, where 〈Wb〉 is the steady-state rise velocity of the regular arrays
and the time-averaged rise velocity of the free arrays.

and in the figure we use this non-dimensionalization. The results show considerable
differences between the two- and the three-dimensional cases as we observed earlier.
The two-dimensional freely evolving array exhibits strong variations with the volume
fraction showing that the ‘mobility’ of the bubbles and hence the velocity fluctuations
are greatly reduced at high volume fractions where the bubbles are more tightly
packed. While we expect k′ to approach zero as α → 0 it is clear that if k′ ∼ αn,
then n < 1 for both the free and the regular array. The three-dimensional results
are, however, much closer to a constant (at least for the range of α examined) and
the free array shows a trend opposite to the rest, with k′/α〈Wb〉2 increasing slightly
with α, in addition to being smaller compared with the regular array. The values are
also much smaller than those of the two-dimensional array and relatively close to
what the potential flow model predicts (k′/α〈Wb〉2 = 0.25), particularly for the freely
evolving low volume fraction array.

4. Conclusions
We have examined the dynamics of homogeneous two- and three-dimensional finite

Reynolds number bubbly flows by direct numerical simulations where inertia, viscos-
ity, and surface tension are fully accounted for. The values of the non-dimensional
viscosity (Morton number) and diameter (Eötvös number) were kept fixed, but the
number of bubbles and the volume fraction were varied. This study complements
an earlier study of a similar system (Esmaeeli & Tryggvason, 1996, 1998) where the
Reynolds numbers were much lower (about 1–2, depending on the volume fraction and
the dimensionality). Owing to finite computational resources, the three-dimensional
simulations have been limited to only eight bubbles per periodic box. We have not,
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however, made any of the simplifying assumptions common to earlier attempts to
simulate multifluid systems, such as potential flow, Stokes flow, or point particles.

The results presented here and in Esmaeeli & Tryggvason (1998) show the following.
(i) A regular array is an unstable configuration that breaks up through interaction

between bubbles that are initially in an ‘in-line’ configuration.
(ii) At moderate Reynolds numbers, Re ∼ 10–30, freely evolving bubbles rise

slower than regular arrays. For low Reynolds numbers, Re ∼ 1–2, freely evolving
arrays rise faster as predicted by theories based on Stokes flow. Our results suggest
that the increased deposition of vorticity at finite Reynolds numbers by the unsteady
bubble motion and/or the irregular bubble distribution is the reason for the opposite
effect at higher Reynolds numbers.

(iii) As the Reynolds number increases, there is an increased trend toward ‘side-by-
side’ configurations of bubble pairs for nearly spherical three-dimensional bubbles.
Potential flow computations predict the formation of horizontal layers for bubbles
with a comparable rise velocity and it is likely that there is a monotonic increase
in the probability of horizontal pairs, from the relatively weak preference seen for
Stokes flow to the strong trend observed for potential flows. This effect is not seen
for two-dimensional bubbles.

One of the key unanswered questions for the systems simulated here is what
happens in three-dimensional systems as the number of bubbles becomes larger. In
particular, we would like to know if large flow structures emerge at late times and
if the velocity fluctuations diverge with the size of the system. In real flows such as
bubble columns and bubbles entrained by breaking waves, for example, geometry,
injection, or external flow can lead to large flow structures. Here, such factors are
absent and we hope that the results become independent of the size of the system
once it is large enough. This may, however, not necessarily be the case. There is
mounting evidence that velocity fluctuations for suspension of particles in Stokes flow
diverge as the system becomes larger (Ladd 1993, 1997) and we have shown that for
two-dimensional low Reynolds number flows there is an inverse energy cascade that
continuously feeds energy to the large flow scales in a way similar to what is seen
for two-dimensional turbulence. For three-dimensional finite Reynolds bubble flows
Koch (1993) has, on the other hand, argued that the wakes of bubbles produce a
shielding effect resulting in convergent velocity fluctuations. As yet, we are not in a
position to settle this issue. For the two-dimensional simulations we found a weak
dependence on the number of bubbles, possibly due to an inverse energy cascade,
but for the fully three-dimensional case we do not have enough data to make definite
statements about the effect of the system size. Our simulations did, however, show
a deficit of bubbles in the wakes of other bubbles as required by the Koch (1993)
theory.

While the two-dimensional results were very successful in yielding well converged
averages with a relatively modest number of bubbles and in a time that is well within
the ranges of current computer power, their usefulness in providing insight into the
three-dimensional dynamics was (not surprisingly) somewhat mixed. In general, the
two-dimensional results predicted the correct trend. However, the interactions between
the bubbles are strongly over-predicted (again not particularly surprising) and even
for the same volume fraction the two-dimensional systems showed much larger
fluctuations compared to the three-dimensional ones. This difference was particularly
striking for the velocity fluctuations in the liquid where the three-dimensional results
were of the same order of magnitude as the predictions of a simple potential flow
model, but the two-dimensional results were not.
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Although we have focused on relatively modest Reynolds numbers so far, there
is nothing in our methodology that prevents simulations of much higher values.
The key consideration is that the resolution requirement increases with increase in
Reynolds number. Since this leads to a much larger number of grid points needed
to resolve each bubble at higher Reynolds numbers, the number of bubbles that can
be simulated on a given grid is obviously much smaller than for lower Reynolds
numbers. Esmaeeli (1995) shows a few two-dimensional simulations of bubbles with
Reynolds numbers up to 800. We have also been limited in the present paper to
relatively small three-dimensional systems. Again, this is only a matter of the total
number of grid points. A parallel version of the code used here should allow an order
of magnitude increase in the size of the computations.

This work was supported by the National Science Foundation under grant CTS-
9503208. The computations were done on the computers at the San Diego Super-
computer Center, which is sponsored by the NSF, and at the Center for Parallel
Computing (CPC) at the University of Michigan. We would like to thank Dr Hal
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